Doctoral Thesis Title: Bayesian Linear Modeling in High Dimensions: Advances in Hierarchical Modeling, Inference, and Evaluation
Publications while at MIT:
Diffusion probabilistic modeling of protein backbones in 3D for the motif-scaffolding problem
BL Trippe, J Yim, D Tischer, T Broderick, D Baker, R Barzilay, T Jaakkola
arXiv preprint arXiv:2206.04119
Many processors, little time: MCMC for partitions via optimal transport couplings
Tin D. Nguyen, Brian L. Trippe, Tamara Broderick https://arxiv.org/abs/2202.11258 22 Feb 2022
B Trippe, H Finucane, T Broderick
https://arxiv.org/abs/2107.06428
Optimal transport couplings of Gibbs samplers on partitions for unbiased estimation
BL Trippe, TD Nguyen, T Broderick
arXiv preprint arXiv:2104.04514
Confidently Comparing Estimators with the c-value
BL Trippe, SK Deshpande, T Broderick
arXiv preprint arXiv:2102.09705.
LR-GLM: High-Dimensional Bayesian Inference Using Low-Rank Data Approximations
Brian L. Trippe, Jonathan H. Huggins, Raj Agrawal, Tamara Broderick https://arxiv.org/abs/1905.07499 17 may 2019.
The kernel interaction trick: Fast bayesian discovery of pairwise interactions in high dimensions
R Agrawal, B Trippe, J Huggins, T Broderick
International Conference on Machine Learning, 141-150