Ed Boyden

Leader, Synthetic Neurobiology Group

Associate Professor, MIT Media Lab and McGovern Institute , Departments of Biological Engineering and Brian and Cognitive Sciences

Co-Director, MIT Center for Neurobiological Engineering

 

Department: 

  • Brain and Cognitive Sciences (BCS)
  • Media Arts and Sciences (Media Lab)
  • Biological Engineering (BE)

Room: 

E15-421
(617) 324-3085

Faculty Bio: 

Ed Boyden is a professor of Biological Engineering and Brain and Cognitive Sciences at the MIT Media Lab and the MIT McGovern Institute. He leads the Synthetic Neurobiology Group, which develops tools for analyzing and repairing complex biological systems such as the brain, and applies them systematically to reveal ground truth principles of biological function as well as to repair these systems. These technologies include expansion microscopy, which enables complex biological systems to be imaged with nanoscale precision, and optogenetic tools, which enable the activation and silencing of neural activity with light, amongst many other innovations. He co-directs the MIT Center for Neurobiological Engineering, which aims to develop new tools to accelerate neuroscience progress.

Amongst other recognitions, he has received the Breakthrough Prize in Life Sciences (2016), the BBVA Foundation Frontiers of Knowledge Award (2015), the Carnegie Prize in Mind and Brain Sciences (2015), the Jacob Heskel Gabbay Award (2013), the Grete Lundbeck Brain Prize (2013), the NIH Director's Pioneer Award (2013), the NIH Director's Transformative Research Award (twice, 2012 and 2013), and the Perl/UNC Neuroscience Prize (2011). He was also named to the World Economic Forum Young Scientist list (2013), the Technology Review World’s "Top 35 Innovators under Age 35" list (2006), and is an elected member of the American Academy of Arts and Sciences (2017).

His group has hosted hundreds of visitors to learn how to use new biotechnologies, and he also regularly teaches at summer courses and workshops in neuroscience, and delivers lectures to the broader public (e.g., TED (2011); TED Summit (2016); World Economic Forum (2012, 2013, 2016)). Ed received his Ph.D. in neurosciences from Stanford University as a Hertz Fellow, where he discovered that the molecular mechanisms used to store a memory are determined by the content to be learned. Before that, he received three degrees in electrical engineering, computer science, and physics from MIT. He has contributed to over 300 peer-reviewed papers, current or pending patents, and articles, and has given over 300 invited talks on his group's work.

Research Areas: 

Research Summary: 

Your brain mediates everything that you sense, feel, think, and do. The brain is incredibly complex - each cubic millimeter of your brain contains perhaps a hundred thousand cells, connected by a billion synapses, each operating with millisecond precision. We develop tools that enable the mapping of the molecules and wiring of the brain, the recording and control of its neural dynamics, and the repair of its dysfunction. We distribute our tools as freely as possible to the scientific community, and also apply them to the systematic analysis of brain computations, aiming to reveal the fundamental mechanisms of brain function, and yielding new, ground-truth therapeutic strategies for neurological and psychiatric disorders.