Mark Bathe

Associate Professor of Biological Engineering


  • Biological Engineering (BE)


(617) 324-5685

Research Areas: 

Research Summary: 

The mission of the Bathe lab is to explore the use of nucleic acids as highly programmable nanoscale materials for revolutionary applications including the targeted in vivo delivery of therapeutic nucleic acids; massive molecular data storage, retrieval, and computing; and quantum computing and sensing, amongst other applications. Our lab develops both design and fabrication procedures based on principles of nucleic acid nanotechnology, which offers the unique ability to program RNA and DNA to form complex, custom nanoscale materials with unusual synthetic properties. Specifically, unlike other materials, nucleic acid based materials are fully controllable in their 2D and 3D structure as well as their chemical composition, which may incorporate peptides, lipids, sugars, chromophores, synthetic polymers, as well as nearly any other secondary molecule for functional purposes. These unique capabilities offer the ability to program molecular functions ranging from immune cell stimulation for vaccine applications to targeted therapeutic delivery of siRNA or CRISPR to organizing chromophore molecules for quantum information processing and computing. We are exploring new means of designing rationally, fabricating at high scale and quality, and validating in vitro and in vivo these nucleic acid based materials for the discovery and commercial translation of revolutionary new materials to solve leading societal problems worldwide.

Research Interests: 

Nucleic acid nanotechnology
Synthetic structural biology
Therapeutic nucleic acid delivery
Molecular computing, data storage and retrieval
Quantum information processing and computing
Quantitative fluorescence imaging and analysis
Complex data analysis and Bayesian inference