Welcome to the MIT Computational and Systems Biology PhD Program (CSB)

The program seeks to train a new breed of quantitative biologists who can take advantage of technologies at the leading edge of science and engineering to tackle fundamental and applied problems in biology. Our students acquire: (i) a background in modern molecular/cell biology; (ii) a foundation in quantitative/engineering disciplines to enable them to create new technologies as well as apply existing methods; and (iii) exposure to subjects emphasizing application of quantitative approaches to biological problems.  Our program and courses emphasize the logic of scientific discovery rather than mastering a specific set of skills or facts.  The program includes teaching experience during one semester of the second year.  It prepares students with the tools needed to succeed in a variety of academic and non-academic careers.

The program is highly selective with typical class sizes 8 to 10 students. About half of our graduate students are women, about one quarter are international students, and about 10% are under-represented minorities.

Students complete most coursework during the first year, while exploring research opportunities through 1- or 2-month research rotations.  A faculty academic advisor assigned in the first year provides guidance and advice. Students choose a research advisor in spring or early summer of year 1 and develop a Ph.D. research project in with their advisor and input from a thesis committee chosen by the student.

Average time to graduation is 5½ years. 

The Program in CSB is committed to increasing opportunities for under-represented minority graduate students and students who have experienced financial hardship or disability.

Latest News:

Could all your digital photos be stored as DNA?

June 10, 2021

A technique for labeling and retrieving DNA data files from a large pool could help make DNA data storage feasible.

 On Earth right now, there are about 10 trillion gigabytes of digital data, and every day, humans produce emails, photos, tweets, and other digital files that add up to another 2.5 million gigabytes of data. Much of this data is stored in enormous facilities known as exabyte data centers (an exabyte is 1 billion gigabytes), which can be the size of several football fields and cost around $1 billion to build and maintain.

Many scientists believe that an alternative solution lies in the molecule that...

Read More